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INTRODUCTION

Although numerical computation of heat transfer has been attempted for at

least the last twenty years, the current capability still requires considerable im-

provement and refinement. The reason that it is so difficult to predict the heat

transfer on turbine blades lles in the simultaneous presence of many complicating

factors such as transition to turbulence, relaminarization, free-stream turbulence,

rotation, curvature, unsteadiness, generation of vortices, secondary flows, and

three-dimensionality. Some of these aspects are discussed in references 1-4.

The purpose of the present project is to evaluate the current state of the art

and to propose appropriate turbulence models for the prediction of the turbine blade

heat transfer.

AVAILABLE EXPERIMENTAL DATA

The development of a satisfactory turbulence model is dependent on the availa-

bility of reliable and relevant experimental data. From a careful search of the

literature, the experimental data given in references 5-9 are judged to be satisfac-

tory for this purpose. The development of turbulence models will be done primarily

by reference to these sets of data. Also, useful related information is available

in references i0-ii.

RELEVANT TURBULENCE MODELS

The main difficulty in the correct prediction of heat transfer on a turbine
blade lies in the determination of transition to turbulence. Purely empirical

criteria for transition cannot properly account for the influence of free-stream

turbulence, curvature, and other factors. Only the low-Reynolds number versions of

the differential turbulence models have, at least in principle, the ability to

"predict" the transition. In these models, the turbulence parameters are computed

even in the laminar-flow region. They have very small values as long as the flow

remains laminar. When the conditions are right for transition, the imbalance be-

tween the generation and dissipation of the turbulence parameters leads to a rapid

growth of the predicted turbulent viscosity, and the turbulent-flow region begins.

Some of the relevant low-Reynolds-number turbulence models are described in refer-

ences 12-15.

Since curvature is an important aspect of the flow over a turbine blade, the

turbulence model should respond to the presence of the streamline curvature.

References 16-22 present turbulence models wlth special emphasis on curvature.

PROPOSED WORK

It is planned to incorporate a number of low-Reynolds-number turbulence models

in a general two-dlmensional boundary layer calculation procedure. This will be

applied to different flow conditions over turbine blades and the predictions will

*Work done under NASA Grant NAG3-579.
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compared with experimental data. The prediction activity will lead to a recommen-

dation about a satisfactory turbulence model for turbine blade heat transfer.
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